Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 12, 2012
Previous Article Next Article

Replacing 2,1,3-benzothiadiazole with 2,1,3-naphthothiadiazole in PCDTBT: towards a low bandgap polymer with deep HOMO energy level

Author affiliations

Abstract

With the rising interest in using the medium bandgap polymer, poly(2,7-carbazole-alt-4,7-dithienyl-2,1,3-benzothiadiazole) (PCDTBT) with deep HOMO energy level for polymer solar cells (PSCs), we have developed an analogous polymer with a lower bandgap, namely, poly(2,7-carbazole-alt-4,7-dithienyl-2,1,3-naphthothiadiazole) (PCDTNT) by replacing 2,1,3-benzothiadiazole (BT) with 2,1,3-naphthothiadiazole (NT) in PCDTBT. Its optical, electrochemical, and photovoltaic properties are fully characterized in comparison with PCDTBT. Clearly, the λmax position of PCDTNT is significantly red-shifted by ∼30 nm, corresponding to a lower optical bandgap (1.71 eV) from the absorption edge of the thin film than that of PCDTBT (1.88 eV). A bulk-heterojunction (BHJ) PSC that incorporated PCDTNT with the low-lying HOMO energy level as a p-type material delivers a higher VOC value of 0.81 V and a power conversion efficiency (PCE) value of 1.31%.

Graphical abstract: Replacing 2,1,3-benzothiadiazole with 2,1,3-naphthothiadiazole in PCDTBT: towards a low bandgap polymer with deep HOMO energy level

Back to tab navigation

Article information


Submitted
05 Jul 2012
Accepted
30 Jul 2012
First published
23 Aug 2012

Polym. Chem., 2012,3, 3276-3281
Article type
Paper

Replacing 2,1,3-benzothiadiazole with 2,1,3-naphthothiadiazole in PCDTBT: towards a low bandgap polymer with deep HOMO energy level

J. Kim, M. H. Yun, G. Kim, J. Y. Kim and C. Yang, Polym. Chem., 2012, 3, 3276
DOI: 10.1039/C2PY20488F

Social activity

Search articles by author

Spotlight

Advertisements