Issue 4, 2012

Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells

Abstract

Phytochemicals constitute a heterogeneous group of substances with an evident role in human health. Their properties on cancer initiation, promotion and progression are well documented. Particular attention is now devoted to better understand the molecular basis of their anticancer action. In the present work, we studied the effect of resveratrol on the ovarian cancer cell line OVCAR-3 by a proteomic approach. Our findings demonstrate that resveratrol down-regulates the protein cyclin D1 and, in a concentration dependent manner, the phosphorylation levels of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK-3β). The dephosphorylation of these kinases could be responsible for the decreased cyclin D1 levels observed after treatment. We also showed that resveratrol reduces phosphorylation levels of the extracellular signal-regulated kinase (ERK) 1/2. Chemical inhibitors of phosphatidylinositol 3-kinase (PI3K) and ERK both increased the in vitro therapeutic efficacy of resveratrol. Moreover, resveratrol had an inhibitory effect on the AKT phosphorylation in cultured cells derived from the ascites of ovarian cancer patients and in a panel of human cancer cell lines. Thus, resveratrol shows antitumor activity in human ovarian cancer cell lines targeting signalling pathway involved in cell proliferation and drug-resistance.

Graphical abstract: Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells

Supplementary files

Article information

Article type
Paper
Submitted
25 Nov 2011
Accepted
06 Dec 2011
First published
10 Jan 2012

Mol. BioSyst., 2012,8, 1078-1087

Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells

D. Vergara, P. Simeone, D. Toraldo, P. Del Boccio, V. Vergaro, S. Leporatti, D. Pieragostino, A. Tinelli, S. De Domenico, S. Alberti, A. Urbani, M. Salzet, A. Santino and M. Maffia, Mol. BioSyst., 2012, 8, 1078 DOI: 10.1039/C2MB05486H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements