Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Volume 157, 2012
Previous Article Next Article

Contrasting the excited state reaction pathways of phenol and para-methylthiophenol in the gas and liquid phases

Author affiliations


To explore how the solvent influences primary aspects of bond breaking, the gas and solution phase photochemistries of phenol and of para-methylthiophenol are directly compared using, respectively, H (Rydberg) atom photofragment translation spectroscopy and femtosecond transient absorption spectroscopy. Approaches are demonstrated that allow explicit comparisons of the nascent product energy disposals and dissociation mechanisms in the two phases. It is found, at least for the case of the weakly perturbing cyclohexane environment, that most aspects of the primary reaction dynamics of the isolated molecule are reproduced in solution. Specifically, in the gas phase, both molecules can undergo fast X–H (X[double bond, length as m-dash]O, S) bond dissociation upon excitation with short wavelengths (193 < λpump < 216 nm), following population of the dissociative S2 (11πσ*) state. Product electronic branching, vibrational and translational energy disposals are determined. Photolysis of phenol and para-methylthiophenol in solution at 200 nm results in formation of vibrationally excited radicals on a timescale shorter than 200 fs. Excitation of para-methylthiophenol at 267 nm reaches close to the S1 (11ππ*)/S2 (11πσ*) conical intersection (CI): ultrafast dissociation is observed in both the isolated and solution systems—again indicating direct dissociation on the S2 potential energy surface. Comparing results for this precursor at different excitation energies, the extent of geminate recombination and the derived H-atom ejection lengths in the condensed phase photolyses are in qualitative agreement with the translational energy release measured in the gas phase studies. Conversely, excitation of phenol at 267 nm prepares the system in its S1 state at an energy well below its S1/S2 CI; the slow O–H bond fission inferred in the gas phase experiments is observed directly in the time-resolved studies in cyclohexane solution via the appearance of phenoxyl radical absorption after ∼1 ns, with only S1 excited state absorption discernible at earlier delay times. The slow O–H bond fission in solution provides additional evidence for a tunnelling dissociation mechanism, where the H atom tunnels beneath the lower diabats of the S2/S1 CI. Finally, the photodissociation of phenol clusters in solution is considered, where evidence is presented that the O–H dissociation coordinate is impeded in H-bonded dimers.

Back to tab navigation

Supplementary files

Article information

03 Mar 2012
23 Mar 2012
First published
23 Mar 2012

Faraday Discuss., 2012,157, 141-163
Article type

Contrasting the excited state reaction pathways of phenol and para-methylthiophenol in the gas and liquid phases

Y. Zhang, T. A. A. Oliver, M. N. R. Ashfold and S. E. Bradforth, Faraday Discuss., 2012, 157, 141
DOI: 10.1039/C2FD20043K

Social activity

Search articles by author