Issue 40, 2012

Electronic transport and mechanical stability of carboxyl linked single-molecule junctions

Abstract

We characterize electron transport across Au–molecule–Au junctions of heterogeneous carboxyl and methyl sulfide terminated saturated and conjugated molecules. Low-bias conductance measurements are performed using the scanning tunneling microscopy based break-junction technique in the presence of solvents and at room temperature. For a series of alkanes with 1–4 carbon atoms in the hydrocarbon chain, our results show an exponential decrease in conductance with increasing molecule length characterized by a decay constant of 0.9 ± 0.1 per methylene group. Control measurements in pH 11 solutions and with COOMe terminations suggest that the carboxylic acid group binds through the formation of a COO–Au bond. Simultaneous measurements of conductance and force across these junctions yield a rupture force of 0.6 ± 0.1 nN, comparable to that required to rupture a Au–SMe bond. By establishing reliable, in situ junction formation, these experiments provide a new approach to probe electronic properties of carboxyl groups at the single molecule level.

Graphical abstract: Electronic transport and mechanical stability of carboxyl linked single-molecule junctions

Article information

Article type
Paper
Submitted
16 May 2012
Accepted
09 Jul 2012
First published
09 Jul 2012

Phys. Chem. Chem. Phys., 2012,14, 13841-13845

Electronic transport and mechanical stability of carboxyl linked single-molecule junctions

S. Ahn, S. V. Aradhya, R. S. Klausen, B. Capozzi, X. Roy, M. L. Steigerwald, C. Nuckolls and L. Venkataraman, Phys. Chem. Chem. Phys., 2012, 14, 13841 DOI: 10.1039/C2CP41578J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements