Issue 18, 2011

Adsorption of bile salts to particles allows penetration of intestinal mucus

Abstract

Mucus forms a protective layer across a variety of epithelial surfaces, presenting a barrier to the uptake of particulates, including bacteria. In the gastrointestinal (GI) tract the barrier has to permit uptake of nutrients, whilst excluding potential hazards, such as bacteria. We have investigated the abilities of an exemplar food-derived particulate and a model bacterium to diffuse through porcine intestinal mucus as a model system. Transport was dramatically enhanced by adsorption of bile salts (BS), diffusion of 500-nm latex beads through mucus increased by three orders of magnitude over 2 min compared to the absence of BS. The diffusion coefficients, a probe of local mucus microrheology, showed a range of apparent viscosity from 1 mPas to at least 10 PaS. Similar effects of BS adsorption on diffusion were observed for model food emulsion droplets after simulated gastrointestinal digestion. In contrast, a non-motile bacterium, E. Coli, was found neither to diffuse through the mucus nor adhere to the mucus, regardless of the presence of BS. The negative charge imparted by BS adsorption significantly changed the electrostatic interactions with the mucus network, which is also primarily negatively charged. Thus, interfacial BS have a dominant role in determining transport of colloidal particles, including digested fat through the intestinal mucus but do not reduce the ability of the mucus to act as a barrier to bacteria. This information is important for the targeted delivery of bioactive molecules, including nutrients and pharmaceuticals and for understanding how GI health is maintained.

Graphical abstract: Adsorption of bile salts to particles allows penetration of intestinal mucus

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2011
Accepted
30 Jun 2011
First published
18 Jul 2011

Soft Matter, 2011,7, 8077-8084

Adsorption of bile salts to particles allows penetration of intestinal mucus

A. Macierzanka, N. M. Rigby, A. P. Corfield, N. Wellner, F. Böttger, E. N. C. Mills and A. R. Mackie, Soft Matter, 2011, 7, 8077 DOI: 10.1039/C1SM05888F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements