Issue 7, 2011

Switching dynamics in cholesteric blue phases

Abstract

Blue phases are networks of disclination lines, which occur in cholesteric liquid crystals near the transition to the isotropic phase. They have recently been used for the new generation of fast switching liquid crystal displays. Here we study numerically the steady states and switching hydrodynamics of blue phase I (BPI) and blue phase II (BPII) cells subjected to an electric field. When the field is on, there are three regimes: for very weak fields (and strong anchoring at the boundaries) the blue phases are almost unaffected, for intermediate fields the disclinations twist (for BPI) and unzip (for BPII), whereas for very large voltages the network dissolves in the bulk of the cell. Interestingly, we find that a BPII cell can recover its original structure when the field is switched off, whereas a BPI cell is found to be trapped more easily into metastable configurations. The kinetic pathways followed during switching on and off entails dramatic reorganisation of the discli nation networks. We also discuss the effect of changing the director field anchoring at the boundary planes and of varying the direction of the applied field.

Graphical abstract: Switching dynamics in cholesteric blue phases

Article information

Article type
Paper
Submitted
13 Sep 2010
Accepted
07 Feb 2011
First published
03 Mar 2011

Soft Matter, 2011,7, 3295-3306

Switching dynamics in cholesteric blue phases

A. Tiribocchi, G. Gonnella, D. Marenduzzo and E. Orlandini, Soft Matter, 2011, 7, 3295 DOI: 10.1039/C0SM00979B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements