Issue 3, 2011

Nanoscale carbon particles and the stability of lipid bilayers

Abstract

The transfer of various nano-scale fullerenes into lipid bilayers has been studied using all-atom (AA) and coarse-grained (CG) molecular dynamics (MD) simulations. The free energy change, when C60, C180, and C540 fullerenes are transferred from water to the interior of a lipid [dioleoylphosphatidylcholine (DOPC)] bilayer, has been calculated. Upon entering the lipid bilayer, the largest (2.4 nm diameter) fullerene causes local distortions in the bilayer surface, which were previously observed in carbon nanotube simulations. These local distortions, however, do not lead to any free energy barriers to bilayer entry. The free energy profiles confirm spontaneous absorption of all three fullerenes. Qualitative agreement was observed when comparing fullerene partitioning in water/bilayer systems to water–hexane systems. In contrast to these nonspecific single fullerene properties, extensive CG-MD simulations of fullerene rich lipid bilayers reveal substantial impact of fullerene-size on the bilayer stability. While previous CG-MD simulations indicated that bilayer bound C60 aggregates have little effect on the bilayer structure, the present MD simulations indicate that C540 aggregation has drastic effects. Specifically, the observed destabilization likely has implications for understanding the cytotoxic mechanisms of nano-carbon particles upon uptake by biological cells.

Graphical abstract: Nanoscale carbon particles and the stability of lipid bilayers

Article information

Article type
Paper
Submitted
10 Sep 2010
Accepted
10 Nov 2010
First published
06 Dec 2010

Soft Matter, 2011,7, 1139-1146

Nanoscale carbon particles and the stability of lipid bilayers

A. Jusufi, R. H. DeVane, W. Shinoda and M. L. Klein, Soft Matter, 2011, 7, 1139 DOI: 10.1039/C0SM00963F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements