Issue 7, 2011

Crosstalk between non-processive myosin motors mediated by the actin filament elasticity

Abstract

Many biological processes involve the action of molecular motors that interact with the cell cytoskeleton. Some processes, such as the transport of cargoes, are achieved mainly by the action of individual motors. Others, such as cell motility and division, require the cooperative work of many motors. Collective motor dynamics can be quite complex and unexpected. One beautiful example is the bidirectional (“back and forth”) motion of filaments which is induced when the motors within a group exert forces in opposite directions. This review tackles the puzzle emerging from a recent experimental work in which it has been shown that the characteristic reversal times of the bidirectional motion are practically independent of the number of motors. This result is in a striking contradiction with existing theoretical models that predict an exponential growth of the reversal times with the size of the system. We argue that the solution to this puzzle may be the crosstalk between the motors which is mediated by the elastic tensile stress that develops in the cytoskeleton track. The crosstalk does not directly correlate the attachment and detachment of the motors, which work independently of each other. However, it highly accelerates their detachments by making the detachment rates system size dependent.

Graphical abstract: Crosstalk between non-processive myosin motors mediated by the actin filament elasticity

Article information

Article type
Review Article
Submitted
03 Sep 2010
Accepted
02 Feb 2011
First published
24 Feb 2011

Soft Matter, 2011,7, 3066-3073

Crosstalk between non-processive myosin motors mediated by the actin filament elasticity

O. Farago and A. Bernheim-Groswasser, Soft Matter, 2011, 7, 3066 DOI: 10.1039/C0SM00927J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements