Issue 4, 2011

Electrostatic-driven pattern formation in fibers, nanotubes and pores

Abstract

The physical properties of interfaces between media with different dielectric permittivities are modified by the adsorption of charged particles. The adsorbed charges can be arranged into self-assembled nanostructures with properties that can be controlled by, for example, varying the ionic abundance of charged species in the media separated by the interface. The presence of inhomogeneous charge distributions at interfaces between media with different dielectric permittivity is a crucial feature of many interesting physical systems including clay, biological ion channels, and DNA-carbon nanotubes complexes. We describe here a general formalism using the electrostatic Green's function to compute the optimal arrangement of charges in cylindrical geometry. This geometry serves as model for a porous medium or a fiber. We study, in particular, the electrostatic energy of charged lamellar structures that cover the cylinder. We demonstrate that, under a variety of conditions, chiral helices are the preferred structure adopted by the lamellar system. These helices are more prominent in systems with higher permittivity in the interior of a tube separating two media, such as in porous media and ion channels, than in fibers with low dielectric interiors in aqueous media. We also analyze the effect of line tension on the surface pattern that competes with the charge-accumulation penalty upon the adsorption of polyions with hydrophobic groups.

Graphical abstract: Electrostatic-driven pattern formation in fibers, nanotubes and pores

Article information

Article type
Paper
Submitted
21 Jul 2010
Accepted
06 Dec 2010
First published
11 Jan 2011

Soft Matter, 2011,7, 1456-1466

Electrostatic-driven pattern formation in fibers, nanotubes and pores

F. J. Solis, G. Vernizzi and M. Olvera de la Cruz, Soft Matter, 2011, 7, 1456 DOI: 10.1039/C0SM00706D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements