Issue 4, 2011

CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion

Abstract

Ionic liquids (ILs), a kind of novel green medium composed entirely of cations and anions, have attracted considerable attention due to their unique properties such as non-volatility, tunable polarity, high stability and so on. In this article, the latest progress on the absorption and subsequent conversion of CO2 by using ILs as absorbents, catalysts or promoters will be summarized. The chemical absorption performance of ILs, especially task-specific ionic liquids (TSILs) such as amino-functionalized ILs, superbase-derived protic ILs has been systematically illustrated. Although significant advances have been made, extensive energy input in the desorption process to recover absorbents would still be a crucial barrier to realizing practical carbon capture and sequestration (CCS). On the other hand, efficient applications of CO2 in the synthesis of valuable compounds such as organic carbonates, urea derivatives, oxazolidinones and formic acid can also be promoted by employing TSILs as catalysts/reaction media. We anticipate that an integration of chemical capture of CO2 with its utilization, a so-called CO2 capture and utilization (CCU) protocol would be an ideal strategy to solve the energy penalty problem in common CCS without the need for additional heat desorption. The essence of this CCU concept is to use TSILs for CO2 capture and substantial activation, which could allow catalytic transformation of CO2 to be accomplished smoothly under low pressure (ideally at 1 atm).

Graphical abstract: CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion

Article information

Article type
Review Article
Submitted
14 Jun 2011
Accepted
24 Jul 2011
First published
22 Aug 2011

RSC Adv., 2011,1, 545-567

CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion

Z. Yang, Y. Zhao and L. He, RSC Adv., 2011, 1, 545 DOI: 10.1039/C1RA00307K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements