Issue 5, 2011

Electrochemistry of folded graphene edges

Abstract

There is enormous interest in the investigation of electron transfer rates at the edges of graphene due to possible energy storage and sensing applications. While electrochemistry at the edges and the basal plane of graphene has been studied in the past, the new frontier is the electrochemistry of folded graphene edges. Here we describe the electrochemistry of folded graphene edges and compare it to that of open graphene edges. The materials were characterized in detail by high-resolution transmission electron microscopy, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. We found that the heterogeneous electron transfer rate is significantly lower on folded graphene edges compared to open edge sites for ferro/ferricyanide, and that electrochemical properties of open edges offer lower potential detection of biomarkers than the folded ones. It is apparent, therefore, that for sensing and biosensing applications the folded edges are less active than open edges, which should then be preferred for such applications. As folded edges are the product of thermal treatment of multilayer graphene, such thermal procedures should be avoided when fabricating graphene for electrochemical applications.

Graphical abstract: Electrochemistry of folded graphene edges

Article information

Article type
Paper
Submitted
07 Feb 2011
Accepted
20 Mar 2011
First published
11 Apr 2011

Nanoscale, 2011,3, 2256-2260

Electrochemistry of folded graphene edges

A. Ambrosi, A. Bonanni and M. Pumera, Nanoscale, 2011, 3, 2256 DOI: 10.1039/C1NR10136F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements