Issue 9, 2011

Hydrothermal formose reaction


The self-condensation of formaldehyde is a one pot reaction resulting in a complex mixture of carbohydrates. Based on a simple chemical, the reaction was previously considered as a prebiotic source for sugar generation. Usually, a high pH and the presence of catalytically active species are required. Here, the formose reaction was performed under hydrothermal temperatures up to 200 °C, and carbohydrates were obtained under even simpler conditions. We found no pronounced catalytic influence of active cations, and a slightly alkaline pH was sufficient to induce the reaction. Maximum yield was reached in very short times, partly less than 1 minute. No selectivity for a particular carbohydrate, although searched for, was found. Contrary to reactions performed at lower temperatures, hexoses were only formed in negligible yields, whereas the shorter carbohydrates accounted for the major fraction. Among the pentoses, ribose and the ketoses with corresponding stereochemistry were formed in higher yields compared to the reaction at lower temperature. Furthermore, we identified 2-deoxyribose in the product mix and found strong indications for the presence of other deoxy compounds. Hence, the hydrothermal formose reaction shows some remarkable differences compared to the conventional reaction at moderate temperatures.

Graphical abstract: Hydrothermal formose reaction

Supplementary files

Article information

Article type
01 Mar 2011
11 May 2011
First published
16 Jun 2011

New J. Chem., 2011,35, 1787-1794

Hydrothermal formose reaction

D. Kopetzki and M. Antonietti, New J. Chem., 2011, 35, 1787 DOI: 10.1039/C1NJ20191C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity