Issue 3, 2011

RAF kinase inhibitory protein (RKIP) modulates cell cycle kinetics and motility

Abstract

RKIP-1 is a metastasis suppressor that is frequently downregulated in aggressive cancers. However, the consequences of RKIP loss in primary or immortalized cells have not yet been explored. Using HEK-293 RKIP depleted (termed HEK-499) and Flp-In T-Rex-293 RKIP inducible cell lines combined with whole transcriptome analysis, we show that RKIP-1 silencing accelerates DNA synthesis and G1/S transition entry by inducing the expression of cdc6, MCM 2, 4, 6, 7, cdc45L, cyclin D2, cyclin E2, cyclin D1, SKP2 and the downregulation of p21cip1. Moreover, RKIP depletion accelerates the time from nuclear envelop breakdown (NEB) to anaphase markedly, while the upregulation of RKIP shortened the NEB to anaphase time. We show that RKIP depletion induces the expression of NEK6, a molecule known to enhance G2/M transition, and down-regulates G2/M checkpoint molecules like Aurora B, cyclin G1 and sertuin that slow the G2/M transition time. These subtle changes in the kinetics of the cell cycle culminate in a higher proliferation rate of HEK-499 compared to control cells. Finally, we show that RKIP depletion enhances cellular motility by inducing the expression/stabilization of β-catenin, vimentin, MET and PAK1. Overall, our data suggest that modulation of the cell cycle checkpoints and motility by RKIP may be fundamental to its metastasis suppressive function in cancer and that RKIP role in a cell is more intricate and diverse than previously thought.

Graphical abstract: RAF kinase inhibitory protein (RKIP) modulates cell cycle kinetics and motility

Supplementary files

Article information

Article type
Paper
Submitted
26 Sep 2010
Accepted
26 Nov 2010
First published
23 Dec 2010

Mol. BioSyst., 2011,7, 928-941

RAF kinase inhibitory protein (RKIP) modulates cell cycle kinetics and motility

F. al-Mulla, M. S. Bitar, Z. Taqi, O. Rath and W. Kolch, Mol. BioSyst., 2011, 7, 928 DOI: 10.1039/C0MB00208A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements