Jump to main content
Jump to site search

Issue 1, 2011
Previous Article Next Article

Microfluidic fabrication of SERS-active microspheres for molecular detection

Author affiliations

Abstract

In this paper, we demonstrated a microfluidic system for fabricating microspheres with hierarchical surface nanopatterns for molecular detection based on surface-enhanced Raman scattering (SERS). Briefly, a photocurable silica suspension was emulsified into monodisperse droplets using a microfluidic device composed of two coaxial glass capillaries. The silica particles in each droplet protruded through the interface and spontaneously formed a hexagonal array. After polymerization of the droplets, we selectively decorated the exposed areas of the silica particles with silver nanoparticles through electroless deposition. The resulting hierarchically-structured microspheres showed high sensitivity and fast binding kinetics in molecular detection based on SERS, owing to the dense array of hot spots on each microsphere and high mobility of the microspheres, respectively. Notably, the SERS signals from molecules adsorbed on the microspheres could be detected in both the dried and suspension states. In addition, we demonstrated that the SERS-active microspheres can be functionalized into structural colored or magnetoresponsive microspheres for advanced applications.

Graphical abstract: Microfluidic fabrication of SERS-active microspheres for molecular detection

Back to tab navigation

Publication details

The article was received on 18 Jun 2010, accepted on 10 Sep 2010 and first published on 20 Oct 2010


Article type: Paper
DOI: 10.1039/C0LC00125B
Citation: Lab Chip, 2011,11, 87-92
  •   Request permissions

    Microfluidic fabrication of SERS-active microspheres for molecular detection

    H. Hwang, S. Kim and S. Yang, Lab Chip, 2011, 11, 87
    DOI: 10.1039/C0LC00125B

Search articles by author

Spotlight

Advertisements