Issue 32, 2011

Shape-regulated high yield synthesis of electrocatalytically active branched Pt nanostructures for oxygen reduction and methanol oxidation reactions

Abstract

We describe a shape regulated synthesis of branched Pt nanostructures (nPts) by a simple polyol method using 1,3-propanediol as solvent and poly(diallyldmethylammonium chloride) (PDDA) as stabilizing agent and their electrocatalytic activity in the oxygen reduction and methanol oxidation reactions. The transmission electron microscopic measurements show that the nanoparticles have multiple branches. The size of the branched nanostructures ranges from 10 to 15 nm and the branches have the width of 3–5 nm. The X-ray diffraction measurement indicates the existence of face centered cubic structure of Pt. UV-vis spectroscopic measurement suggests that the reduction of Pt(IV) proceeds through the formation of Pt(II) species. The solvent and the stabilizing agent plays vital role in the growth of nPts. Aggregated nanoparticles were obtained in the absence of PDDA. The traditional solvent ethylene glycol in the presence of PDDA yields only spherical nanoparticles. The nPts were loaded onto the walls of multiwall carbon nanotube (MWCNT) to examine their electrocatalytic activity. The nanoparticles on MWCNT retain their initial shape, size and morphology. The electrocatalytic activity of nPts toward oxygen reduction reaction (ORR) was evaluated in terms of kinetic current density using rotating-ring-disk electrode (RRDE) system. The nanostructured electrocatalyst favors the 4-electron pathway for the reduction of oxygen at a more positive potential with a kinetic current density of 11.97 mA cm−2. The electrocatalytic performance of the catalyst in the methanol oxidation reaction (MOR) was studied with chronoamperometry and potential dependent electrochemical impedance spectroscopy measurements. The nPts show high specific activity in the ORR and MOR. The electrocatalytic activity of nPts towards ORR and MOR is compared with the commercial catalyst and spherical nanoparticles.

Graphical abstract: Shape-regulated high yield synthesis of electrocatalytically active branched Pt nanostructures for oxygen reduction and methanol oxidation reactions

Supplementary files

Article information

Article type
Paper
Submitted
23 Apr 2011
Accepted
17 May 2011
First published
29 Jun 2011

J. Mater. Chem., 2011,21, 11973-11980

Shape-regulated high yield synthesis of electrocatalytically active branched Pt nanostructures for oxygen reduction and methanol oxidation reactions

S. Ghosh, R. K. Sahu and C. R. Raj, J. Mater. Chem., 2011, 21, 11973 DOI: 10.1039/C1JM11788B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements