Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Metastable Intermolecular Composites or so-called Nanoenergetic Materials have been widely touted for their potential to fulfill dreams in high density energetic materials and nanotechnology. They are likely to become the next-generation explosives, propellants and primes as they enable flexibility in energy density and power release through control of particle size, tunable stoichiometry and choice of fuel and oxidizer. Despite intense examination by scientists and engineers worldwide the temperature progress and velocity of the thermal front propagation on the nanostructured formulations, however, gas pressure evolution and rate of gas release are not well investigated and understood. This issue has seriously impeded realization of various potential emerging applications envisioned in rocket solid fuels and explosives, which require a high pressure discharge in a short period of time as well as in bio-defeat systems. This highlight describes principles and development of Nanoenergetic Gas-Generators (NGG) systems comprising high PV (pressure × volume) values and energy densities (up to 25.7 kJ cm−3) that may have several potential civil and military applications. Our recent study revealed that Al/Bi2O3 and Al/I2O5 nanocomposites can generate a transient pressure pulse more than three times larger than that during the explosion of traditional thermite reactive mixtures.

Graphical abstract: Nanoenergetic Gas-Generators: principles and applications

Page: ^ Top