Issue 22, 2011

Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property

Abstract

Different C–N bonding configurations in nitrogen (N) doped carbon materials have different electronic structures. Carbon materials doped with only one kind of C–N bonding configuration are an excellent platform for studying doping effects on the electronic structure and physical/chemical properties. Here we report synthesis of single layer graphene doped with pure pyridinic N by thermal chemical vapour deposition of hydrogen and ethylene on Cu foils in the presence of ammonia. By adjusting the flow rate of ammonia, the atomic ratio of N and C can be modulated from 0 to 16%. The domain like distribution of N incorporated in graphene was revealed by the imaging of Raman spectroscopy and time-of-flight secondary ion mass spectrometry. The ultraviolet photoemission spectroscopy investigation demonstrated that the pyridinic N efficiently changed the valence band structure of graphene, including the raising of density of π states near the Fermi level and the reduction of work function. Such pyridinic N doping in carbon materials was generally considered to be responsible for their oxygen reduction reaction (ORR) activity. The 2e reduction mechanism of ORR on our CNxgraphene revealed by rotating disk electrode voltammetry indicated that the pyridinic N may not be an effective promoter for ORR activity of carbon materials as previously expected.

Graphical abstract: Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property

Supplementary files

Article information

Article type
Paper
Submitted
25 Feb 2011
Accepted
24 Mar 2011
First published
21 Apr 2011

J. Mater. Chem., 2011,21, 8038-8044

Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property

Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu and J. Lin, J. Mater. Chem., 2011, 21, 8038 DOI: 10.1039/C1JM10845J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements