Issue 18, 2011

2,3,9,10,16,17,23,24-Octakis(hexylsulfonyl)phthalocyanines with good n-type semiconducting properties. Synthesis, spectroscopic, and electrochemical characteristics

Abstract

The synthesis of peripherally octa-substituted phthalocyanine compounds with eight strong electron-withdrawing hexylsulfonyl groups was systematically studied. Three new phthalocyanines M[Pc(SO2C6H13)8] [Pc(SO2C6H13)8 = 2,3,9,10,16,17,23,24-octakis(hexylsulfonyl)phthalocyaninate; M = 2H (1), Cu (2), Zn (3)] were synthesized via direct cyclic tetramerization of 4,5-di(hexylsulfonyl)phthalonitrile or through a diiminoisoindoline intermediate. Compounds 1–3 could alternatively be prepared by oxidation of the hexylthio substituents in corresponding 2,3,9,10,16,17,23,24-octakis(hexylthio)phthalocyanine compounds M[Pc(SC6H13)8] (M = 2H, Cu, Zn) with m-chloroperbenzoic acid. They were fully characterized by elemental analysis and a series of spectroscopic methods. Their electrochemistry was studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Density function theory (DFT) calculations were conducted to study the effect of the strong electron-withdrawing groups on the electronic structure of the phthalocyanine molecules. Particularly, the first reduction potentials in the range −0.30∼−0.04 V vs. the saturated calomel electrode (SCE) for 1–3 reveal their n-type semiconducting nature. The current–voltage characteristics of their aggregates demonstrate the good semiconducting properties especially for 1 and 2 with the conductivity value of 5.24 × 10−4 and 2.73 × 10−4 S m−1, respectively.

Graphical abstract: 2,3,9,10,16,17,23,24-Octakis(hexylsulfonyl)phthalocyanines with good n-type semiconducting properties. Synthesis, spectroscopic, and electrochemical characteristics

Supplementary files

Article information

Article type
Paper
Submitted
20 Jan 2011
Accepted
23 Feb 2011
First published
21 Mar 2011

J. Mater. Chem., 2011,21, 6515-6524

2,3,9,10,16,17,23,24-Octakis(hexylsulfonyl)phthalocyanines with good n-type semiconducting properties. Synthesis, spectroscopic, and electrochemical characteristics

Y. Zhang, P. Ma, P. Zhu, X. Zhang, Y. Gao, D. Qi, Y. Bian, N. Kobayashi and J. Jiang, J. Mater. Chem., 2011, 21, 6515 DOI: 10.1039/C1JM10295H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements