Issue 24, 2011

Nanoporous alloy aggregates: synthesis and electrocatalytic activity

Abstract

Nanoporous structures are widely used for many applications and hence there have been several efforts directed towards their synthesis. While several template-based and template-less approaches are available for monometallic systems, there is no general method for the synthesis of nanoporous multicomponent systems/alloys. We present a general template-less strategy for the synthesis of nanoporous alloy aggregates by controlled aggregation of nanoparticles in the solution phase with excellent control over morphology and composition as illustrated using AuPt, AuPd, PdPt and PtRu systems as examples. The Pt-based nanoporous clusters exhibit excellent activity for methanol oxidation with good long-term stability and CO tolerance. We show that the method can be extended to produce ternary catalysts and hence we expect our method to be widely used for the synthesis of multifunctional nanoporous structures for catalysis, sensor and drug-delivery applications.

Graphical abstract: Nanoporous alloy aggregates: synthesis and electrocatalytic activity

Supplementary files

Article information

Article type
Paper
Submitted
19 Jan 2011
Accepted
07 Apr 2011
First published
10 May 2011

J. Mater. Chem., 2011,21, 8721-8726

Nanoporous alloy aggregates: synthesis and electrocatalytic activity

E. A. Anumol, A. Halder, C. Nethravathi, B. Viswanath and N. Ravishankar, J. Mater. Chem., 2011, 21, 8721 DOI: 10.1039/C1JM10287G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements