Issue 9, 2011

Oxide ion conduction anisotropy deconvoluted in polycrystalline apatite-type lanthanum silicates

Abstract

Recent efforts to understand the anisotropic oxide ion conduction mechanism in apatite-type La9.33+x(SiO4)6O2+3x/2 (−0.5 ≤ x ≤ 1.25) by the sophisticated structural investigation and atomistic simulations could not definitely be corroborated nor refuted by the experimental conductivity measurements, since no measurements on single crystalline lanthanum silicates are available. In the present work the strong frequency dispersions in the bulk impedance of the polycrystalline silicates were successfully described by a hierarchical ladder network of two resistors and non-ideal capacitor elements with the smaller resistance element representing the contribution from the grains whose c-axes are oriented parallel to the transport and the larger resistance element from the grains in unfavorable orientations. All nominally lanthanum excess compositions (0.5 ≤ x ≤ 1.25) exhibited similar bulk conduction behavior which is consistent with the solubility limit at x = 0.43 ± 0.12 determined by microprobe analysis. A high-conductivity component attributable to the grains with c-axis transport exhibited an activation energy of 0.33 ± 0.02 eV. The process with a higher activation energy of 0.70 eV is ascribed to the grains oriented in the perpendicular direction with respect to transport direction. For lanthanum-deficient compositions with x < 0 the conductivity values plummeted from those of the lanthanum-excess ones and the activation energies increased up to 0.59 eV and 0.87 eV for the parallel and perpendicular direction, respectively. Oxide ion conduction anisotropy deconvoluted from the polycrystalline specimens suggests a consistent description of the conduction mechanism and defect chemistry of the lanthanum silicates. With the activation energy values of 0.33 eV for the migration of oxygen interstitials along the c-axis, the difference between the lanthanum excess and the lanthanum deficit composition can be attributed to the energy for generating oxygen interstitials which also appears to amount to ca. 0.3 eV. As the c-axis transport pathways are non-linear, the parallel and perpendicular transport are not completely separable and the migration energy for the perpendicular transport can be ascribed to the energy for the inter-channel reaction in addition to the energy for the parallel transport.

Graphical abstract: Oxide ion conduction anisotropy deconvoluted in polycrystalline apatite-type lanthanum silicates

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2010
Accepted
16 Nov 2010
First published
14 Jan 2011

J. Mater. Chem., 2011,21, 2940-2949

Oxide ion conduction anisotropy deconvoluted in polycrystalline apatite-type lanthanum silicates

Y. Kim, D. Shin, E. Shin, H. Seo and J. Lee, J. Mater. Chem., 2011, 21, 2940 DOI: 10.1039/C0JM03242E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements