Issue 12, 2011

Determination of trace elements in high-purity copper by ETV-ICP OES using halocarbons as chemical modifiers

Abstract

Inspired by the globule arc technique a new electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP OES) method was developed for the analysis of high-purity copper materials. The performance of the method was investigated for the analytes Ag, Al, As, Bi, Cd, Co, Cr, Fe, Mg, Mn, Ni, P, Pb, S, Sb, Se, Si, Sn, Te, Ti, Zn and Zr. ETV parameters were optimized regarding the release of the analytes, the transport efficiency and the quality of analytical results in terms of precision, trueness and power of detection. The influence of CCl2F2, CHClF2, C2H2F4 and CHF3 as gaseous halogenation modifiers was investigated. A sufficient in situanalyte matrix separation was achieved by using CHF3 as halogenating reagent avoiding a high matrix input from the molten copper sample into the ETV system and the plasma. A complete release from the samples was obtained for all investigated analytes except Se and Te. Acceptable results for the determination of the trace elements Ag, Al, As, Bi, Cd, Co, Cr, Fe, Mg, Mn, Ni, P, Pb, S, Sb, Si, Sn, Ti, Zn and Zr in high-purity copper were achieved. The method includes a preceding sample preparation step of oxidizing the surface of copper samples which results in a significantly enhanced sensitivity. In addition to the calibration with copper samples, the feasibility of the calibration with liquid multi-element solutions was investigated. Except for Ag, Mg and Ni all analytes could be analyzed using aqueous calibration solutions. The trueness of the method was tested by the determination of analyte contents of certified reference materials. Limits of quantification ranging from 0.6 ng g−1 to 29 ng g−1 were achieved. The developed direct solid sampling method is time and cost effective and well suited for the characterization of high-purity copper materials. The method can be automated to a large extent and is applicable for processes accompanying analyses. In contrast to all other investigated trace elements, Se and Te were not released from the matrix at measurable levels under the used conditions. The determination of these elements is still under investigation and will be reported in a succeeding publication.

Graphical abstract: Determination of trace elements in high-purity copper by ETV-ICP OES using halocarbons as chemical modifiers

Article information

Article type
Paper
Submitted
17 May 2011
Accepted
23 Aug 2011
First published
04 Oct 2011

J. Anal. At. Spectrom., 2011,26, 2404-2418

Determination of trace elements in high-purity copper by ETV-ICP OES using halocarbons as chemical modifiers

J. Hassler, P. Barth, S. Richter and R. Matschat, J. Anal. At. Spectrom., 2011, 26, 2404 DOI: 10.1039/C1JA10149H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements