Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 10, 2011
Previous Article Next Article

Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells

Author affiliations

Abstract

The performance of centimeter-sized energy devices is regulated by inhomogeneously distributed nanoscale defects. To improve device efficiency and reduce cost, accurate characterization of these nanoscale defects is necessary. However, the multiscale nature of this problem presents a characterization challenge, as non-destructive techniques often specialize in a single decade of length scales, and have difficulty probing non-destructively beneath the surface of materials with sub-micron spatial resolution. Herein, we push the resolution limits of synchrotron-based nanoprobe X-ray fluorescence mapping to 80 nm, to investigate a recombination-active intragranular defect in industrial solar cells. Our nano-XRF measurements distinguish fundamental differences between benign and deleterious dislocations in solar cell devices: we observe recombination-active dislocations to contain a high degree of nanoscale iron and copper decoration, while recombination-inactive dislocations appear clean. Statistically meaningful high-resolution measurements establish a connection between commercially relevant materials and previous fundamental studies on intentionally contaminated model defect structures, pointing the way towards optimization of the industrial solar cell process. Moreover, this study presents a hierarchical characterization approach that can be broadly extended to other nanodefect-limited energy systems with the advent of high-resolution X-ray imaging beamlines.

Graphical abstract: Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells

Back to tab navigation

Supplementary files

Article information


Submitted
06 Jul 2011
Accepted
27 Jul 2011
First published
07 Sep 2011

Energy Environ. Sci., 2011,4, 4252-4257
Article type
Paper

Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells

M. I. Bertoni, D. P. Fenning, M. Rinio, V. Rose, M. Holt, J. Maser and T. Buonassisi, Energy Environ. Sci., 2011, 4, 4252
DOI: 10.1039/C1EE02083H

Social activity

Search articles by author

Spotlight

Advertisements