Issue 6, 2011

Identifying surface structural changes in layered Li-excess nickel manganeseoxides in high voltage lithium ion batteries: A joint experimental and theoretical study

Abstract

High voltage cathode materials Li-excess layered oxide compounds Li[NixLi1/3−2x/3Mn2/3−x/3]O2 (0 < x < 1/2) are investigated in a joint study combining both computational and experimental methods. The bulk and surface structures of pristine and cycled samples of Li[Ni1/5Li1/5Mn3/5]O2 are characterized by synchrotron X-Ray diffraction together with aberration corrected Scanning Transmission Electron Microscopy (a-S/TEM). Electron Energy Loss Spectroscopy (EELS) is carried out to investigate the surface changes of the samples before/after electrochemical cycling. Combining first principles computational investigation with our experimental observations, a detailed lithium de-intercalation mechanism is proposed for this family of Li-excess layered oxides. The most striking characteristics in these high voltage high energy density cathode materials are 1) formation of tetrahedral lithium ions at voltage less than 4.45 V and 2) the transition metal (TM) ions migration leading to phase transformation on the surface of the materials. We show clear evidence of a new spinel-like solid phase formed on the surface of the electrode materials after high-voltage cycling. It is proposed that such surface phase transformation is one of the factors contributing to the first cycle irreversible capacity and the main reason for the intrinsic poor rate capability of these materials.

Graphical abstract: Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study

Supplementary files

Article information

Article type
Paper
Submitted
05 Feb 2011
Accepted
30 Mar 2011
First published
03 May 2011

Energy Environ. Sci., 2011,4, 2223-2233

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study

B. Xu, C. R. Fell, M. Chi and Y. S. Meng, Energy Environ. Sci., 2011, 4, 2223 DOI: 10.1039/C1EE01131F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements