Issue 8, 2011

Oxygen diffusion in solid oxidefuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations

Abstract

Solid oxide fuel cells are of technological interest as they offer high efficiency for energy conversion in a clean way. Understanding fundamental aspects of oxygen self-diffusion in solid state ionic systems is important for the discovery of next-generation electrolyte and cathode material compositions and microstructures that can enable the operation of SOFCs at lower temperatures more efficiently, durably, and economically. In the present perspective article, we illustrate the important role of modelling and simulations in providing direct atomic scale insights on the oxygen ion transport mechanisms and conduction properties in the cathode and electrolyte materials, and in accelerating the progress from old materials to new concepts. We first summarize the ionic transport mechanisms in the traditional cathode and electrolyte materials which have been widely studied. We then pay our attention to the non-traditional materials and their oxygen transport paths from recent studies, focusing on structural and transportanisotropy and lattice dynamics. Lastly, we highlight the new developments in the potential to increase the ionic conductivity of the traditional materials through external mechanical stimuli, bringing about the mechano-chemical coupling to drive fast ionic transport.

Graphical abstract: Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations

Article information

Article type
Perspective
Submitted
26 Nov 2010
Accepted
21 Apr 2011
First published
27 May 2011

Energy Environ. Sci., 2011,4, 2774-2789

Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations

A. Chroneos, B. Yildiz, A. Tarancón, D. Parfitt and J. A. Kilner, Energy Environ. Sci., 2011, 4, 2774 DOI: 10.1039/C0EE00717J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements