Enthalpy–entropy correlations as chemical guides to unravel self-assembly processes
Abstract
Intermolecular connections play a crucial role in biology (recognition, signalling, binding), in physics (material cohesion) and in chemistry ((supra)molecular engineering). While a phenomenological thermodynamic free-energy approach for modelling self-assemblies is now at hand, a more satisfying description based on the chemically-intuitive enthalpic and entropic contributions remains elusive. On the other hand, the innumerable reports of empirical enthalpy/entropy correlations characterizing intermolecular interactions justify a questioning about the emergence and exploitation of an apparent ‘fourth law of thermodynamics’, which could provide a simple manipulation of intermolecular binding processes. This tutorial Perspective aims at highlighting the current level of non-quantum rationalization of enthalpy–entropy correlations and their chemical consequences on the tuning and on the programming of intermolecular interactions in pure materials, and in diluted solutions.
Please wait while we load your content...