Jump to main content
Jump to site search

Issue 27, 2011
Previous Article Next Article

A 2D homochiral inorganic–organic framework exhibiting a spin–flop transition

Author affiliations

Abstract

A 2D homochiral inorganic–organic framework {[Mn(NPTA)(4,4′-bpy)(H2O)]·(H2O)2}n was prepared by assembling achiral polar 4-nitrophthalic acid, manganese ions, and ancillary 4,4′-bipyridine ligands (NPTA = 4-nitrophthalate) (4,4′-bpy = 4,4′-bipyridine). The isomorphous Zn(II) compound was also prepared as a diamagnetic analogue. Adjacent manganese spin centres are linked by the synanti carboxylate to form a helical chain, and chains of the same chirality are connected by 4,4′-bpy ligands to generate a homochiral layered framework. Edge-to-face aromatic interactions between neighboring layers lead to a 3D homochiral supramolecular structure. Magnetization and heat capacity measurements indicate that the framework is a weak antiferromagnet at low applied field. The magnetic interactions between adjacent manganese ions in the helical chain can be fitted using the 1D Fisher model, with 2J/k = −0.68 K and g = 2.00. Moreover, the compound displays a unique field-dependent spin–flop transition in high magnetic fields, with a critical field of 23.6 kOe at 1.9 K.

Graphical abstract: A 2D homochiral inorganic–organic framework exhibiting a spin–flop transition

Back to tab navigation

Supplementary files

Article information


Submitted
02 Dec 2010
Accepted
24 Jan 2011
First published
03 Mar 2011

Dalton Trans., 2011,40, 7147-7152
Article type
Paper

A 2D homochiral inorganic–organic framework exhibiting a spin–flop transition

W. Li, P. T. Barton, R. P. Burwood and A. K. Cheetham, Dalton Trans., 2011, 40, 7147
DOI: 10.1039/C0DT01686A

Social activity

Search articles by author

Spotlight

Advertisements