A novel class of efficient visible light sensitized antenna complexes of Eu3+ based on the use of a series of highly conjugated β-diketonates, namely, 1-(1-phenyl)-3-(2-fluoryl) propanedione, 1-(2-naphthyl)-3-(2-fluoryl)propanedione, 1-(4-biphenyl)-3-(2-fluoryl) propanedione, and 2,2′-bis(di-p-tolylphosphino)-1,1′-binaphthyl oxide as an ancillary ligand has been designed, synthesized, characterized and their photophysical properties investigated. The coordination geometries of the typical Eu3+ complexes were calculated using the Sparkle/PM3 model. Photophysical properties of europium complexes benefit from adequate protection of the metal by the rigid phosphine oxide ligand against non-radiative deactivation and efficient ligand-to-metal energy transfer exceeding 50% as compared to precursor samples. The replacement of the phenyl group with the naphthyl or biphenyl groups in the 3-position of the fluoryl based β-diketonate ligand remarkably extends the excitation window of the corresponding Eu3+ complexes towards the visible region (up to 500 nm). The highly conjugated β-diketonate ligands sensitize efficiently the luminescence of Eu3+ ions with quantum yields ranging from 19 to 43 % in the solid state, which is among the highest reported for a visible sensitized Eu3+complex. The theoretical quantum efficiencies from the Sparkle/PM3 structures are in good agreement with the experimental values, clearly attesting to the efficacy of the theoretical models.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?