Issue 11, 2011

Influence of the chelate effect on the electronic structure of one-electron oxidized group 10 metal(ii)-(disalicylidene)diamine complexes

Abstract

The neutral and one-electron oxidized group 10 metal, Ni(II), Pd(II) and Pt(II), six-membered chelate Salpn (Salpn = N,N′-bis(3,5-di-tert-butylsalicylidene)-1,3-propanediamine) complexes have been investigated and compared to the five-membered chelate Salen (N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-ethanediamine) and Salcn (N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) complexes. Reaction of the Salpn complexes with 1 equivalent of AgSbF6 affords the oxidized complexes which exist as ligand radical species in solution and in the solid state. The solid state structures of the oxidized complexes have been determined by X-ray crystal structure analysis. While the Ni and Pt analogues exhibit an essentially symmetric coordination sphere contraction upon oxidation, the oxidized Pd derivative exhibits an asymmetric metal binding environment demonstrating at least partial ligand radical localization. In comparison to the oxidized Salen and Salcn complexes, the propyl backbone of the Salpn complexes leads to a larger deviation from a planar geometry in the solid state. The electronic structure of the oxidized Salpn complexes was further probed by UV-vis-NIR measurements, electrochemistry, EPR spectroscopy, and theoretical calculations. The intense NIR band for the one-electron oxidized Salpn complexes shifts to lower energy in comparison to the 5-membered chelate analogues, which is attributed to lower metal dxz character in the β-LUMO for the Salpn series. The reactivity of the one-electron oxidized Salpn complexes with exogenous ligands was also studied. In the presence of pyridine, the oxidized Ni analogue exhibits a shift in the locus of oxidation to a Ni(III) species. The oxidized PtSalpn complex rapidly decomposes in the presence of pyridine, even at low temperature. Interestingly, electronic and EPR spectroscopy suggests that the addition of pyridine to the oxidized Pd analogue results in initial dissociation of the phenoxyl radical ligand, likely due to the increased flexibility of the propyl backbone.

Graphical abstract: Influence of the chelate effect on the electronic structure of one-electron oxidized group 10 metal(ii)-(disalicylidene)diamine complexes

Supplementary files

Article information

Article type
Paper
Submitted
12 Nov 2010
Accepted
07 Dec 2010
First published
02 Feb 2011

Dalton Trans., 2011,40, 2469-2479

Influence of the chelate effect on the electronic structure of one-electron oxidized group 10 metal(II)-(disalicylidene)diamine complexes

Y. Shimazaki, N. Arai, T. J. Dunn, T. Yajima, F. Tani, C. F. Ramogida and T. Storr, Dalton Trans., 2011, 40, 2469 DOI: 10.1039/C0DT01574A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements