Issue 4, 2011

Catalytic alkylation of arylGrignard reagents by iron(iii) amine-bis(phenolate) complexes

Abstract

Reaction of n-propylamino-N,N-bis(2-methylene-4-tert-butyl-6-methylphenol), H2L1, n-propylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H2L2, and benzylamino-N,N-bis(2-methylene-4-tert-butyl-6-methylphenol), H2L3, with anhydrous ferric chloride in the presence of base yields the products, [FeL1(μ-Cl)]2 (1), [FeL2(μ-Cl)]2 (2) and [FeL3(μ-Cl)]2 (3). In the solid state, these complexes exist as chloride-bridged dimers giving distorted trigonal bipyramidal iron(III) ions. Reaction of H2L1 with FeBr3, however, results in the formation of a tetrahedral iron(III) complex possessing two bromide ligands. The amine-bis(phenolate) ligand is bidentate in this complex and bonds to the iron(III) ion via the phenolate O-donors. The central amine donor is protonated, resulting in a quaternized ammonium fragment and the iron(III) centre possesses a negative formal charge. As a result, this complex is zwitterionic and formulated as FeBr2L1H (4). Complex 1 is an air-stable, non-hygroscopic, single-component catalyst for C–C cross-coupling of aryl Grignard reagents with primary and secondary alkyl halides, including chlorides. Good to excellent yields of cross-coupled products are obtained in diethyl ether at room temperature. In some cases where low yields are obtained under these conditions, the use of microwave-assisted heating of the reaction mixture can improve yields.

Graphical abstract: Catalytic alkylation of aryl Grignard reagents by iron(iii) amine-bis(phenolate) complexes

Supplementary files

Article information

Article type
Paper
Submitted
15 Sep 2010
Accepted
13 Oct 2010
First published
30 Nov 2010

Dalton Trans., 2011,40, 933-943

Catalytic alkylation of aryl Grignard reagents by iron(III) amine-bis(phenolate) complexes

X. Qian, L. N. Dawe and C. M. Kozak, Dalton Trans., 2011, 40, 933 DOI: 10.1039/C0DT01239D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements