Issue 9, 2011

Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications

Abstract

A heterogeneous, versatile nano-magnesia-zirconia or MgO–ZrO2 (MZ) catalyst was prepared by an ultra dilution method. The as-synthesised catalyst was characterized by several analytical techniques such as XRD, particle size analysis, BET surface area, thermogravimetric analysis (TGA), differential thermal analysis (DTA), FT-IR spectroscopy, SEM (scanning electron microscope), TEM (transmission electron microscope) and XPS (X-ray fluorescence spectroscopy). The surface area is found to be 268 m2 g−1. The catalytic activity of MZ was tested for various important organic reactions such as cross-aldol condensation, N-benzyloxycarbonylation of amines, reduction of aromatic nitrocompounds, and synthesis of 1,5-benzodiazepines. It has been observed that for all reactions MZ shows a good catalytic activity. All corresponding products were obtained in good to excellent yield under mild conditions. The MgO-ZrO2 catalyst can be prepared from inexpensive precursors, has high surface area, and is reusable and recyclable for all reactions.

Graphical abstract: Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications

Supplementary files

Article information

Article type
Paper
Submitted
09 Jul 2011
Accepted
04 Oct 2011
First published
24 Oct 2011

Catal. Sci. Technol., 2011,1, 1653-1664

Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications

M. B. Gawande, P. S. Branco, K. Parghi, J. J. Shrikhande, R. K. Pandey, C. A. A. Ghumman, N. Bundaleski, O. M. N. D. Teodoro and R. V. Jayaram, Catal. Sci. Technol., 2011, 1, 1653 DOI: 10.1039/C1CY00259G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements