Issue 40, 2011

Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio

Abstract

In this paper, the influences of the lithium content in the starting materials on the final performances of as-prepared LixMnPO4 (x hereafter represents the starting Li content in the synthesis step which does not necessarily mean that LixMnPO4 is a single phase solid solution in this work.) are systematically investigated. It has been revealed that Mn2P2O7 is the main impurity when Li < 1.0 while Li3PO4 begins to form once x > 1.0. The interactions between Mn2P2O7 or Li3PO4 impurities and LiMnPO4 are studied in terms of the structural, electrochemical, and magnetic properties. At a slow rate of C/50, the reversible capacity of both Li0.5MnPO4 and Li0.8MnPO4 increases with cycling. This indicates a gradual activation of more sites to accommodate a reversible diffusion of Li+ ions that may be related to the interaction between Mn2P2O7 and LiMnPO4 nanoparticles. Among all of the different compositions, Li1.1MnPO4 exhibits the most stable cycling ability probably because of the existence of a trace amount of Li3PO4 impurity that functions as a solid-state electrolyte on the surface. The magnetic properties and X-ray absorption spectroscopy (XAS) of the MnPO4·H2O precursor, pure and carbon-coated LixMnPO4 are also investigated to identify the key steps involved in preparing a high-performance LiMnPO4.

Graphical abstract: Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2011
Accepted
26 Aug 2011
First published
12 Sep 2011

Phys. Chem. Chem. Phys., 2011,13, 18099-18106

Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio

J. Xiao, N. A. Chernova, S. Upreti, X. Chen, Z. Li, Z. Deng, D. Choi, W. Xu, Z. Nie, G. L. Graff, J. Liu, M. S. Whittingham and J. Zhang, Phys. Chem. Chem. Phys., 2011, 13, 18099 DOI: 10.1039/C1CP22658D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements