Issue 34, 2011

Molecular transport in nanopores: a theoretical perspective

Abstract

Molecular transport in nanopores plays a central role in many emerging nanotechnologies for gas separation and storage, as well as in nanofluidics. Theories of the transport provide an understanding of the mechanisms that influence the transport and their interplay, and can lead to tractable models that can be used to advance these nanotechnologies through process analysis and optimisation. We review some of the most influential theories of fluid transport in small pores and confined spaces. Starting from the century old Knudsen formulation, the dusty gas model and several other related approaches that share a common point of departure in the Maxwell–Stefan diffusion equations are discussed. In particular, the conceptual basis of the models and the validity of the assumptions and simplifications necessary to obtain their final results are analysed. It is shown that the effect of adsorption is frequently either neglected, or treated on an ad hoc basis, such as through the division of the pore flux into gas-phase and surface diffusion contributions. Furthermore, while it is commonplace to assume that cross-sectional pressure is uniform, it is demonstrated that this violates the Gibbs–Duhem relation and that it is the chemical potential that essentially remains constant in the cross-section, as near-equilibrium density profiles are preserved even during transport. The Dusty Gas model and Maxwell–Stefan model for surface diffusion are analysed, and their strengths and weaknesses discussed, illustrating the use of conflicting choices of frames of reference in the former case, and the importance of assigning appropriate values for the binary diffusivity in the latter case. The oscillator model, developed in this laboratory, which is exact in the low density limit under diffuse reflection conditions, is shown to represent an advance on the classical Knudsen formula, although the latter frequently appears as a fundamental part of many transport models. The distributed friction model, also developed in this laboratory for the study of multi-component transport at any Knudsen number is discussed and compared with previous approaches. Finally, the outlook for theory and future research needs are discussed.

Graphical abstract: Molecular transport in nanopores: a theoretical perspective

Article information

Article type
Perspective
Submitted
13 Apr 2011
Accepted
15 Jun 2011
First published
12 Jul 2011

Phys. Chem. Chem. Phys., 2011,13, 15350-15383

Molecular transport in nanopores: a theoretical perspective

S. K. Bhatia, M. R. Bonilla and D. Nicholson, Phys. Chem. Chem. Phys., 2011, 13, 15350 DOI: 10.1039/C1CP21166H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements