Issue 37, 2011

A reactive force field for aqueous-calcium carbonate systems

Abstract

A new reactive force field has been derived that allows the modelling of speciation in the aqueous-calcium carbonate system. Using the ReaxFF methodology, which has now been implemented in the program GULP, calcium has been simulated as a fixed charge di-cation species in both crystalline phases, such as calcite and aragonite, as well as in the solution phase. Excluding calcium from the charge equilibration process appears to have no adverse effects for the simulation of species relevant to the aqueous environment. Based on this model, the speciation of carbonic acid, bicarbonate and carbonate have been examined in microsolvated conditions, as well as bulk water. When immersed in a droplet of 98 water molecules and two hydronium ions, the carbonate ion is rapidly converted to bicarbonate, and ultimately carbonic acid, which is formed as the metastable cis-trans isomer under kinetic control. Both first principles and ReaxFF calculations exhibit the same behaviour, but the longer timescale accessible to the latter allows the diffusion of the carbonic acid to the surface of the water to be observed, where it is more stable at the interface. Calcium carbonate is also examined as ion pairs in solution for both CaCO30(aq) and CaHCO3+(aq), in addition to the (10[1 with combining macron]4) surface in contact with water.

Graphical abstract: A reactive force field for aqueous-calcium carbonate systems

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2011
Accepted
27 Jul 2011
First published
18 Aug 2011

Phys. Chem. Chem. Phys., 2011,13, 16666-16679

A reactive force field for aqueous-calcium carbonate systems

J. D. Gale, P. Raiteri and A. C. T. van Duin, Phys. Chem. Chem. Phys., 2011, 13, 16666 DOI: 10.1039/C1CP21034C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements