Issue 23, 2011

Testing the use of molecular dynamics to simulate fluorophore motions and FRET

Abstract

Fluorescence resonance energy transfer (FRET) is commonly used to determine the proximity of fluorophores, but usually many assumptions are required to gain a quantitative relationship between the likelihood of energy transfer and fluorophore separation. Molecular Dynamics (MD) simulations provide one way of checking these assumptions, but before using simulations to study complex systems it is important to make sure that they can correctly model the motions of fluorophores and the likely FRET efficiency in a simple system. Here we simulate a well characterised situation of independent fluorophores in solution so that we can compare the predictions with expected values. Our simulations reproduce the experimental fluorescence anisotropy of Alexafluor488 and predict that of AlexaFluor568. At the ensemble level we are able to reproduce the expected isotropic and dynamic motion of the fluorophores as well as the FRET efficiency of the system. At the level of single donor–acceptor pairs, however, very long simulations are required to adequately sample the translational motion of the fluorophores and more surprisingly also the rotational motion. Our studies demonstrate how MD simulations can be used in more complex systems to check if the dynamic orientation averaging regime applies, if the fluorophores have isotropic orientational motion, to calculate the likely values of the orientation factor κ2 and to determine the FRET efficiency of the system in both dynamic and static orientational averaging regimes. We also show that it is possible in some situations to create system specific relationships between FRET efficiency and fluorophore separation that can be used to interpret experimental data and find any correlations between κ2 and separation that may influence distance measurements.

Graphical abstract: Testing the use of molecular dynamics to simulate fluorophore motions and FRET

Article information

Article type
Paper
Submitted
21 Feb 2011
Accepted
05 Apr 2011
First published
09 May 2011

Phys. Chem. Chem. Phys., 2011,13, 11045-11054

Testing the use of molecular dynamics to simulate fluorophore motions and FRET

E. Deplazes, D. Jayatilaka and B. Corry, Phys. Chem. Chem. Phys., 2011, 13, 11045 DOI: 10.1039/C1CP20447E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements