Issue 2, 2011

A metabolic profiling strategy for biomarker screening by GC-MS combined with multivariate resolution method and Monte Carlo PLS-DA

Abstract

A GC-MS based metabolic profiling method via a multivariate resolution method and Monte Carlo PLS-DA is proposed for screening potential biomarkers, and applied to Type 2 diabetes mellitus. The metabolic profiles of plasma samples from healthy control and Type 2 diabetes mellitus patient groups were obtained by GC-MS, and 25 compounds considered as endogenous metabolites excluding glucose were identified. With the help of a multivariate resolution method, qualitative and quantitative results of the metabolic profiles were extracted for subsequent multivariate statistical analysis. In order to select potential biomarkers, responsible for the classification of the two groups, Monte Carlo PLS-DA was introduced. The distribution of the regression coefficients of PLS-DA models corresponding to the metabolites was obtained. The levels of metabolites with all positive coefficients were considered as decreased from healthy controls to patients, and all negative coefficients were considered as increased. Univariate t-test was employed to check for metabolites whose levels changed significantly. Metabolites identified as potential biomarkers of Type 2 diabetes mellitus were ten in total, namely lactate, alanine, α-hydroxyisobutyric acid, phosphate, serine, pyroglutamic acid, palmitic acid, stearic acid, 1-monopalmitin and cholesterol. Finally, canonical correlation analysis was used to explore the correlation between the selected ten metabolites and blood glucose, which was considered to be a routine parameter reflecting the disease state. The results showed that the ten selected metabolites correlated well with blood glucose (r = 0.81, p = 0.03), and may be considered as possible biomarkers of Type 2 diabetes mellitus. The results demonstrated that the proposed method may be a useful tool to discover potential biomarkers of diseases.

Graphical abstract: A metabolic profiling strategy for biomarker screening by GC-MS combined with multivariate resolution method and Monte Carlo PLS-DA

Article information

Article type
Paper
Submitted
25 Aug 2010
Accepted
30 Oct 2010
First published
01 Dec 2010

Anal. Methods, 2011,3, 438-445

A metabolic profiling strategy for biomarker screening by GC-MS combined with multivariate resolution method and Monte Carlo PLS-DA

M. Zeng, Y. Liang, H. Li, B. Wang and X. Chen, Anal. Methods, 2011, 3, 438 DOI: 10.1039/C0AY00518E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements