Issue 13, 2011

Strong and bioactive gelatin–graphene oxide nanocomposites

Abstract

Bioactive gelatin–graphene oxide (GO) nanocomposites with varying GO contents were fabricated by a solution-casting method. With the addition of 1 wt% GO, the tensile strength, Young's modulus and energy at break of gelatin were found to increase by 84%, 65% and 158%, respectively. Such reinforcement effects were investigated in detail in terms of the size and morphology of GO sheets, the dispersion degree of GO sheets in gelatin matrix and the interactions between the two phases. The Young's moduli of the nanocomposites were well predicted by the Mori–Tanaka model with application of the effective volume fraction of reinforcement that takes into account the nanofiller and a fraction of the macromolecules adsorbed onto its surface. The GO nanosheets also improved the bioactivity of gelatin by inducing more calcium phosphate nanocrystals on the composites. GO acts as both an effective reinforcement filler and a biological activator in hydrophilic biopolymers such as gelatin, offering the biopolymer–GO nanocomposites great potential to be further developed in biomedical fields.

Graphical abstract: Strong and bioactive gelatin–graphene oxide nanocomposites

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2011
Accepted
04 May 2011
First published
26 May 2011

Soft Matter, 2011,7, 6159-6166

Strong and bioactive gelatin–graphene oxide nanocomposites

C. Wan, M. Frydrych and B. Chen, Soft Matter, 2011, 7, 6159 DOI: 10.1039/C1SM05321C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements