Issue 11, 2011

Structuring of colloidal suspensions confined between a silica microsphere and an air bubble

Abstract

This study contributes to the understanding of the effects of confining surface properties on the interactions within thin liquid films of colloidal nanoparticles. Colloidal probe atomic force microscopy was used for studying the interaction of colloidal nanoparticles between the solid–liquid and air–liquid interfaces. The influence of the surfactant on the surface deformability and on the structuring of the nanoparticles was determined. Therefore, surfactants of different charges, i.e.sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide (C16TAB) and β-dodecylmaltoside (β-C12G2) were chosen. The oscillatory force caused by the layering formation of the nanoparticles was detected between the AFM microsphere probe and the bubble, and the oscillatory wavelength that reflected the interlayer distance of the nanoparticles was found to scale with colloidal nanoparticle concentration as c−1/3. Under constant experimental conditions (AFM probe radius, bubble size, Debye length and contact angle), the bubble stiffness was found to increase linearly with surface tension, while the oscillatory wavelength was not affected by the bubble’s deformability. In addition, the cationic surfactant C16TAB displayed different behavior on the retraction part of the force curve, in which a pronounced adhesion force was observed. This phenomenon might be attributed to the hydrophobization caused by the monolayer formation of cationic surfactant on the silica sphere surface. Thus a stable thin film of colloidal nanoparticles was assumed to be formed between the silica microsphere and the bubble when electrostatic repulsion existed.

Graphical abstract: Structuring of colloidal suspensions confined between a silica microsphere and an air bubble

Article information

Article type
Paper
Submitted
14 Dec 2010
Accepted
28 Mar 2011
First published
27 Apr 2011

Soft Matter, 2011,7, 5329-5338

Structuring of colloidal suspensions confined between a silica microsphere and an air bubble

Y. Zeng and R. von Klitzing, Soft Matter, 2011, 7, 5329 DOI: 10.1039/C0SM01487G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements