Issue 8, 2011

Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp. CS

Abstract

Naphthomycins (NATs) are 29-membered naphthalenic ansamacrolactam antibiotics with antimicrobial and antineoplastic activities. Their biosynthesis starts from 3-amino-5-hydroxy-benzoic acid (AHBA). By PCR amplification with primers for AHBA synthase and amino-dehydroquinate (aDHQ) synthase, a genomic region containing orthologs of these genes was identified in Streptomyces sp. CS. It was confirmed to be involved in naphthomycin biosynthesis by deletion of a large DNA fragment, resulting in abolishment of naphthomycin production. A 106 kb region was sequenced, and 32 complete ORFs were identified, including five polyketide synthase genes, eight genes for AHBA synthesis, and putative genes for modification, regulation, transport or resistance. Targeted inactivation and complementation experiments proved that the halogenase genenat1 is responsible for the chlorination of C-30 of NATs. The nat1 mutant could also be complemented with asm12, the halogenase gene of ansamitocin biosynthesis. Likewise, an asm12 mutant could be complemented with nat1, suggesting a similar catalytic mechanism for both halogenases. A putative hydroxylase gene, nat2, was also inactivated, whereupon the biosynthesis of NATs was completely abolished with a tetraketide desacetyl-SY4b accumulated, indicating the participation of nat2 in the formation of the naphthalene ring. The information presented here expands our understanding of the biosynthesis of naphthalenic ansamycins, and may pave the way for engineering ansamacrolactams with improved pharmaceutical properties.

Graphical abstract: Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp. CS

Supplementary files

Article information

Article type
Paper
Submitted
28 Jan 2011
Accepted
28 Apr 2011
First published
26 May 2011

Mol. BioSyst., 2011,7, 2459-2469

Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp. CS

Y. Wu, Q. Kang, Y. Shen, W. Su and L. Bai, Mol. BioSyst., 2011, 7, 2459 DOI: 10.1039/C1MB05036B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements