Jump to main content
Jump to site search

Issue 18, 2011
Previous Article Next Article

Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells

Author affiliations

Abstract

This paper presents a microfluidic system for cell type classification using mechanical and electrical measurements on single cells. Cells are aspirated continuously through a constriction channel with cell elongations and impedance profiles measured simultaneously. The cell transit time through the constriction channel and the impedance amplitude ratio are quantified as cell's mechanical and electrical property indicators. The microfluidic device and measurement system were used to characterize osteoblasts (n = 206) and osteocytes (n = 217), revealing that osteoblasts, compared with osteocytes, have a larger cell elongation length (64.51 ± 14.98 μm vs. 39.78 ± 7.16 μm), a longer transit time (1.84 ± 1.48 s vs. 0.94 ± 1.07 s), and a higher impedance amplitude ratio (1.198 ± 0.071 vs. 1.099 ± 0.038). Pattern recognition using the neural network was applied to cell type classification, resulting in classification success rates of 69.8% (transit time alone), 85.3% (impedance amplitude ratio alone), and 93.7% (both transit time and impedance amplitude ratio as input to neural network) for osteoblasts and osteocytes. The system was also applied to test EMT6 (n = 747) and EMT6/AR1.0 cells (n = 770, EMT6 treated by doxorubicin) that have a comparable size distribution (cell elongation length: 51.47 ± 11.33 μm vs. 50.09 ± 9.70 μm). The effects of cell size on transit time and impedance amplitude ratio were investigated. Cell classification success rates were 51.3% (cell elongation alone), 57.5% (transit time alone), 59.6% (impedance amplitude ratio alone), and 70.2% (both transit time and impedance amplitude ratio). These preliminary results suggest that biomechanical and bioelectrical parameters, when used in combination, could provide a higher cell classification success rate than using electrical or mechanical parameter alone.

Graphical abstract: Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells

Back to tab navigation

Supplementary files

Article information


Submitted
31 May 2011
Accepted
05 Jul 2011
First published
08 Aug 2011

Lab Chip, 2011,11, 3174-3181
Article type
Paper

Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells

J. Chen, Y. Zheng, Q. Tan, E. Shojaei-Baghini, Y. L. Zhang, J. Li, P. Prasad, L. You, X. Y. Wu and Y. Sun, Lab Chip, 2011, 11, 3174
DOI: 10.1039/C1LC20473D

Social activity

Search articles by author

Spotlight

Advertisements