Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Volume 153, 2011

Nonadiabatic ab initio molecular dynamics including spin–orbit coupling and laser fields

Author affiliations

Abstract

Nonadiabatic ab initio molecular dynamics (MD) including spin–orbit coupling (SOC) and laser fields is investigated as a general tool for studies of excited-state processes. Up to now, SOCs are not included in standard ab initio MD packages. Therefore, transitions to triplet states cannot be treated in a straightforward way. Nevertheless, triplet states play an important role in a large variety of systems and can now be treated within the given framework. The laser interaction is treated on a non-perturbative level that allows nonlinear effects like strong Stark shifts to be considered. As MD allows for the handling of many atoms, the interplay between triplet and singlet states of large molecular systems will be accessible. In order to test the method, IBr is taken as a model system, where SOC plays a crucial role for the shape of the potential curves and thus the dynamics. Moreover, the influence of the nonresonant dynamic Stark effect is considered. The latter is capable of controlling reaction barriers by electric fields in time-reversible conditions, and thus a control laser using this effect acts like a photonic catalyst. In the IBr molecule, the branching ratio at an avoided crossing, which arises from SOC, can be influenced.

Article information


Submitted
01 Apr 2011
Accepted
18 May 2011
First published
20 Jul 2011

Faraday Discuss., 2011,153, 261-273
Article type
Paper

Nonadiabatic ab initio molecular dynamics including spin–orbit coupling and laser fields

P. Marquetand, M. Richter, J. González-Vázquez, I. Sola and L. González, Faraday Discuss., 2011, 153, 261 DOI: 10.1039/C1FD00055A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements