Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Issue 12, 2011
Previous Article Next Article

Carbon coated textiles for flexible energy storage

Author affiliations


This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ∼0.25 A·g−1 achieved a high gravimetric and areal capacitance, an average of 85 F·g−1 on cotton lawn and polyester microfiber, both corresponding to ∼0.43 F·cm−2.

Graphical abstract: Carbon coated textiles for flexible energy storage

Back to tab navigation

Supplementary files

Article information

19 Aug 2011
26 Sep 2011
First published
20 Oct 2011

Energy Environ. Sci., 2011,4, 5060-5067
Article type

Carbon coated textiles for flexible energy storage

K. Jost, C. R. Perez, J. K. McDonough, V. Presser, M. Heon, G. Dion and Y. Gogotsi, Energy Environ. Sci., 2011, 4, 5060
DOI: 10.1039/C1EE02421C

Social activity

Search articles by author