Issue 39, 2011

Preservation phenomena of methane hydrate in pore spaces

Abstract

Dissociation processes of methane hydrate synthesized with glass beads were investigated using powder X-ray diffraction and calorimetry. Methane hydrate formed with coarse glass beads dissociated quickly at 150–200 K; in this temperature range methane hydrate dissociates at atmospheric pressure. In contrast, methane hydrate formed with glass beads less than a few microns in size showed very high stability up to just below the melting point of ice, even though this temperature is well outside the zone of thermodynamic stability of the hydrate. The rate-determining steps for methane hydrate dissociation within pores are also discussed. The experimental results suggest that methane hydrate existing naturally within the pores of fine particles such as mud at low temperatures would be significantly more stable than expected thermodynamically.

Graphical abstract: Preservation phenomena of methane hydrate in pore spaces

Supplementary files

Article information

Article type
Communication
Submitted
20 Jul 2011
Accepted
31 Aug 2011
First published
14 Sep 2011

Phys. Chem. Chem. Phys., 2011,13, 17449-17452

Preservation phenomena of methane hydrate in pore spaces

A. Hachikubo, S. Takeya, E. Chuvilin and V. Istomin, Phys. Chem. Chem. Phys., 2011, 13, 17449 DOI: 10.1039/C1CP22353D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements