Jump to main content
Jump to site search

Issue 10, 2011

Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold

Author affiliations

Abstract

Recently, several forms of unsupportedgold were shown to display a remarkable activity to catalyze oxidation reactions. Experimental evidence points to the crucial role of residual silver present in very small concentrations in these novel catalysts. We focus on the catalytic properties of nanoporous gold (np-Au) foams probed viaCO and oxygen adsorption/co-adsorption. Experimental results are analyzed using theoretical models represented by the flat Au(111) and the kinked Au(321) slabs with Ag impurities. We show that Ag atoms incorporated into gold surfaces can facilitate the adsorption and dissociation of molecular oxygen on them. CO adsorbed on top of 6-fold coordinated Au atoms can in turn be stabilized by co-adsorbed atomic oxygen by up to 0.2 eV with respect to the clean unsubstituted gold surface. Our experiments suggest a linking of that most strongly bound CO adsorption state to the catalytic activity of np-Au. Thus, our results shed light on the role of silver admixtures in the striking catalytic activity of unsupported gold nanostructures.

Graphical abstract: Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold

Supplementary files

Article information


Submitted
02 Nov 2010
Accepted
05 Jan 2011
First published
25 Jan 2011

Phys. Chem. Chem. Phys., 2011,13, 4529-4539
Article type
Paper

Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold

L. V. Moskaleva, S. Röhe, A. Wittstock, V. Zielasek, T. Klüner, K. M. Neyman and M. Bäumer, Phys. Chem. Chem. Phys., 2011, 13, 4529 DOI: 10.1039/C0CP02372H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements