Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

There will be scheduled maintenance work beginning on Saturday 15th June 2019 at 8:30 am through to Sunday 16th June 2019 at 11:30 pm (BST).

During this time our website may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 4, 2011
Previous Article Next Article

Effect of sustained elevated temperature prior to amplification on template copy number estimation using digital polymerase chain reaction

Author affiliations

Abstract

Digital polymerase chain reaction (dPCR) has the potential to enable accurate quantification of target DNA copy number provided that all target DNA molecules are successfully amplified. Following duplex dPCR analysis from a linear DNA target sequence that contains single copies of two independent template sequences, we have observed that amplification of both templates in a single partition does not always occur. To investigate this finding, we heated the target DNA solution to 95 °C for increasing time intervals and then immediately chilled on ice prior to preparing the dPCR mix. We observed an exponential decline in estimated copy number (R2 ≥ 0.98) of the two template sequences when amplified from either a linearized plasmid or a 388 base pair (bp) amplicon containing the same two template sequences. The distribution of amplifiable templates and the final concentration (copies per µL) were both affected by heat treatment of the samples at 95 °C from 0 s to 30 min. The proportion of target sequences from which only one of the two templates was amplified in a single partition (either 1507 or hmg only) increased over time, while the proportion of target sequences where both templates were amplified (1507 and hmg) in each individual partition declined rapidly from 94% to 52% (plasmid) and 88% to 31% (388 bp amplicon) suggesting an increase in number of targets from which both templates no longer amplify. A 10 min incubation at 95 °C reduced the initial amplifiable template concentration of the plasmid and the 388 bp amplicon by 59% and 91%, respectively. To determine if a similar decrease in amplifiable target occurs during the default pre-activation step of typical PCR amplification protocol, we used mastermixes with a 20 s or 10 min hot-start. The choice of mastermix and consequent pre-activation time did not affect the estimated plasmid concentration. Therefore, we conclude that prolonged exposure of this DNA template to elevated temperatures could lead to significant bias in dPCR measurements. However, care must be taken when designing PCR and non-PCR based experiments by reducing exposure of the DNA template to sustained elevated temperatures in order to improve accuracy in copy number estimation and concentration determination.

Graphical abstract: Effect of sustained elevated temperature prior to amplification on template copy number estimation using digital polymerase chain reaction

Back to tab navigation

Publication details

The article was received on 07 Jul 2010, accepted on 28 Oct 2010 and first published on 25 Nov 2010


Article type: Paper
DOI: 10.1039/C0AN00484G
Analyst, 2011,136, 724-732

  •   Request permissions

    Effect of sustained elevated temperature prior to amplification on template copy number estimation using digital polymerase chain reaction

    S. Bhat, J. L. H. McLaughlin and K. R. Emslie, Analyst, 2011, 136, 724
    DOI: 10.1039/C0AN00484G

Search articles by author

Spotlight

Advertisements