Issue 5, 2016

Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells

Abstract

Lead halide perovskites have attracted considerable interest as photoabsorbers in PV-applications over the last few years. The most studied perovskite material achieving high photovoltaic performance has been methyl ammonium lead iodide, CH3NH3PbI3. Recently the highest solar cell efficiencies have, however, been achieved with mixed perovskites where iodide and methyl ammonium partially have been replaced by bromide and formamidinium. In this work, the mixed perovskites were explored in a systematic way by manufacturing devices where both iodide and methyl ammonium were gradually replaced by bromide and formamidinium. The absorption and the emission behavior as well as the crystallographic properties were explored for the perovskites in this compositional space. The band gaps as well as the crystallographic structures were extracted. Small changes in the composition of the perovskite were found to have a large impact on the properties of the materials and the device performance. In the investigated compositional space, cell efficiencies, for example, vary from a few percent up to 20.7%. From the perspective of applications, exchanging iodide with bromide is especially interesting as it allows tuning of the band gap from 1.5 to 2.3 eV. This is highly beneficial for tandem applications, and an empirical expression for the band gap as a function of composition was determined. Exchanging a small amount of iodide with bromide is found to be highly beneficial, whereas a larger amount of bromide in the perovskite was found to cause intense sub band gap photoemission with detrimental results for the device performance. This could be caused by the formation of a small amount of an iodide rich phase with a lower band gap, even though such a phase was not observed in diffraction experiments. This shows that stabilizing the mixed perovskites will be an important task in order to get the bromide rich perovskites, which has a higher band gap, to reach the same high performance obtained with the best compositions.

Graphical abstract: Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells

Supplementary files

Article information

Article type
Paper
Submitted
05 Jan 2016
Accepted
09 Mar 2016
First published
10 Mar 2016

Energy Environ. Sci., 2016,9, 1706-1724

Author version available

Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells

T. Jesper Jacobsson, J. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel and A. Hagfeldt, Energy Environ. Sci., 2016, 9, 1706 DOI: 10.1039/C6EE00030D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements