Issue 12, 2010

Protein decorated membranes by specific molecular interactions

Abstract

Here we characterize new metal-functionalized amphiphilic diblock copolymers, developed for both surface and solution molecular recognition applications. Polybutadiene-block-poly(ethylene oxide) copolymers functionalized with nitrilotriacetic acid and tris(nitrilotriacetic acid) were complexed with nickel(II) to obtain coordination sites for oligohistidine residues of model proteins. Mixtures of functionalized polymers with the respective non-functionalized block copolymers self-assemble in aqueous solution into vesicular structures with a controlled density of the metal end-groups on their surface. In solution, binding of His6-tagged green fluorescent protein (EGFP) and red fluorescent protein (RFP) to the vesicle surface was quantified by fluorescence correlation spectroscopy. Small-angle X-ray scattering indicates an increase of the membrane thickness by 2–3 nm upon protein binding. Block copolymer monolayers at the air–water interface and on solid support served as a model system to characterize the protein-decorated membranes by Brewster angle microscopy and AFM. High resolution AFM of solid-supported, hydrated monolayers indicates that the proteins form densely packed and partially ordered arrays with the cylindrically shaped EGFP molecules lying flat on the surface of the films.

Graphical abstract: Protein decorated membranes by specific molecular interactions

Supplementary files

Article information

Article type
Paper
Submitted
10 Feb 2010
Accepted
15 Apr 2010
First published
18 May 2010

Soft Matter, 2010,6, 2815-2824

Protein decorated membranes by specific molecular interactions

R. Nehring, C. G. Palivan, S. Moreno-Flores, A. Mantion, P. Tanner, J. L. Toca-Herrera, A. Thünemann and W. Meier, Soft Matter, 2010, 6, 2815 DOI: 10.1039/C002838J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements