Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

We demonstrate for the first time that selective cross-coupling of methanol with either ethanol or n-butanol occurs below room temperature on metallic gold with no metal oxide support in a reaction sequence that occurs entirely on the surface. The esterification proceeds via activation of the alcohols by adsorbed oxygen and a sequence of reactions that involve both surface-bound alkoxys and hemiacetals as intermediates. The reaction selectivity is dictated by competing β-hydride elimination from the alkoxys. Due to the higher activation energy for β-hydride elimination from methoxy, no formate esters are formed. A molecular-scale mechanism constructed using our results is in excellent agreement with studies of heterogeneous catalysts, providing insight into selectivity control under a broad range of conditions.

Graphical abstract: Oxygen-assisted cross-coupling of methanol with alkyl alcohols on metallic gold

Page: ^ Top