Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 7, 2010
Previous Article Next Article

UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?

Author affiliations


The carcinogenic action of UVA radiation is commonly attributed to DNA oxidation mediated by endogenous photosensitisers. Yet, it was recently shown that cyclobutane pyrimidine dimers (CPD), well known for their involvement in UVB genotoxicity, are produced in larger yield than oxidative lesions in UVA-irradiated cells and skin. In the present work, we gathered mechanistic information on this photoreaction by comparing formation of all possible bipyrimidine photoproducts upon UVA irradiation of cells, purified genomic DNA and dA20:dT20 oligonucleotide duplex. We observed that the distribution of photoproducts, characterized by the sole formation of CPD and the absence of (6-4) photoproducts was similar in the three types of samples. The CPD involving two thymines represented 90% of the amount of photoproducts. Moreover, the yields of formation of the DNA lesions were similar in cells and isolated DNA. In addition, the effect of the wavelength of the incident photons was found to be the same in isolated DNA and cells. This set of data shows that UVA-induced cyclobutane pyrimidine dimers are formed via a direct photochemical mechanism, without mediation of a cellular photosensitiser. This is possible because the double-stranded structure increases the capacity of DNA bases to absorb UVA photons, as evidenced in the case of the oligomer dA20:dT20. These results emphasize the need to consider UVA in the carcinogenic effects of sunlight. An efficient photoprotection is needed that can only be complete by completely blocking incident photons, rather than by systemic approaches such as antioxidant supplementation.

Graphical abstract: UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?

Back to tab navigation

Publication details

The article was received on 24 Nov 2009, accepted on 09 Jan 2010 and first published on 04 Feb 2010

Article type: Paper
DOI: 10.1039/B924712B
Citation: Org. Biomol. Chem., 2010,8, 1706-1711

  •   Request permissions

    UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?

    S. Mouret, C. Philippe, J. Gracia-Chantegrel, A. Banyasz, S. Karpati, D. Markovitsi and T. Douki, Org. Biomol. Chem., 2010, 8, 1706
    DOI: 10.1039/B924712B

Search articles by author