Issue 4, 2010

Limonene magic: noncovalent molecular chirality transfer leading to ambidextrous circularly polarised luminescent π-conjugated polymers

Abstract

Solvent chirality transfer using (S)- and (R)-limonenes, which are candidates for renewable volatile bioresources (bp 176 °C/760 Torr or bp 94 °C/68 Torr), allowed for the successful production of optically active poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-bithiophene] (F8T2) particles with circular dichroism (CD) and circularly polarised luminescence (CPL) properties. The particles were rapidly produced by CD-silent F8T2 with the aid of solvent chirality transfer at 25 °C. The present paper demonstrates the following: (i) through weak intermolecular forces, such as π/π, van der Waals and CH/π interactions, CD-/CPL-active F8T2 aggregates successfully emerge in a chiral tersolvent system of chloroform (a good solvent), alkanol (a poor solvent) and limonene (a chiral solvent); (ii) the alkanol and the enantiopurity of the limonene greatly affect the magnitude and sign of CD-/CPL-signals; (iii) aggregate size considerably affects the magnitude of the induced CD amplitude; (iv) clockwise and counter-clockwise stirring during preparation do not affect the magnitude of these signals; (v) stirring speed weakly affects the induced CD amplitude and (vi) the order of addition of limonene and methanol to the chloroform solution of F8T2 greatly affects the magnitude of the induced CD amplitude. To prove the renewability of limonenes, we re-used (S)-limonene purified by distilling very impure (S)-limonene-containing chloroform, methanol and F8T2, which was used and stored in a number of limonene chirality transfer experiments. As expected, the CD-/UV-vis spectra of F8T2 particles utilizing the renewed (S)-limonene gave similar CD-/UV-vis spectra to those using the fresh (S)-limonene. Moreover, limonene chirality transfer was possible to obtain two CD-active polymers from CD-silent, poly(9,9-di-n-octylfluorenyl-2,7-diyl) (F8) and poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-thiophene] (F8T1). The protocol may provide an environmentally friendly, safe and mild process to rapidly produce ambidextrous light-emitting polymers with a minimal loss of starting polymers at ambient temperature, from CD-silent polymers without any specific chiral substituents or chiral catalysts.

Graphical abstract: Limonene magic: noncovalent molecular chirality transfer leading to ambidextrous circularly polarised luminescent π-conjugated polymers

Supplementary files

Article information

Article type
Paper
Submitted
05 Dec 2009
Accepted
04 Jan 2010
First published
12 Feb 2010

New J. Chem., 2010,34, 637-647

Limonene magic: noncovalent molecular chirality transfer leading to ambidextrous circularly polarised luminescent π-conjugated polymers

Y. Kawagoe, M. Fujiki and Y. Nakano, New J. Chem., 2010, 34, 637 DOI: 10.1039/B9NJ00733D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements