We present a novel microfluidic device integrated with microvalves and micropumps for rapid DNA hybridization using shuttle flow. The device is composed of 48 hybridization units containing 48 microvalves and 96 micropumps for the automation of shuttle flow. We used four serotypes of Dengue Virus genes (18mer) to demonstrate that the automatic shuttle flow shortened the hybridization time to 90 s, reduced sample consumption to 1 μL and lowered detection limit to 100 pM (100 amol in a 1 μL sample). Moreover, we applied this device to realize single base discrimination and analyze 48 samples containing different DNA targets, simultaneously. For kinetic measurements of nucleotide hybridization, on-line monitoring of the processes was carried out. This rapid hybridization device has the ability for accommodating the entire hybridization process (i.e., injection, hybridization, washing, detection, signal acquisition) in an automated and high-throughput fashion.